Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming
نویسندگان
چکیده
Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. S. Hu · L. Qi · Y. Song Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong S. Hu e-mail: [email protected] L. Qi e-mail: [email protected] Y. Song e-mail: [email protected] G. Li (B) Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia e-mail: [email protected]
منابع مشابه
On the largest eigenvalue of a symmetric nonnegative tensor
In this paper, some important spectral characterizations of symmetric nonnegative tensors are analyzed. In particular, it is shown that a symmetric nonnegative tensor has the following properties: (i) its spectral radius is zero if and only if it is a zero tensor; (ii) it is weakly irreducible (respectively, irreducible) if and only if it has a unique positive (respectively, nonnegative) eigenv...
متن کاملLinear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor
An iterative method for finding the largest eigenvalue of a nonnegative tensor was proposed by Ng, Qi, and Zhou in 2009. In this paper, we establish an explicit linear convergence rate of the Ng–Qi–Zhou method for essentially positive tensors. Numerical results are given to demonstrate linear convergence of the Ng–Qi–Zhou algorithm for essentially positive tensors. Copyright © 2011 John Wiley &...
متن کاملLinear Convergence of the Lzi Algorithm for Weakly Positive Tensors
We define weakly positive tensors and study the relations among essentially positive tensors, weakly positive tensors, and primitive tensors. In particular, an explicit linear convergence rate of the Liu-Zhou-Ibrahim(LZI) algorithm for finding the largest eigenvalue of an irreducible nonnegative tensor, is established for weakly positive tensors. Numerical results are given to demonstrate linea...
متن کاملCharacterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations
In this paper we study multivariate polynomial functions in complex variables and the corresponding associated symmetric tensor representations. The focus is on finding conditions under which such complex polynomials/tensors always take real values. We introduce the notion of symmetric conjugate forms and general conjugate forms, and present characteristic conditions for such complex polynomial...
متن کاملM-Tensors and Some Applications
We introduce M -tensors. This concept extends the concept ofM -matrices. We denote Z-tensors as the tensors with nonpositive off-diagonal entries. We show that M -tensors must be Ztensors and the maximal diagonal entry must be nonnegative. The diagonal elements of a symmetric M -tensor must be nonnegative. A symmetric M -tensor is copositive. Based on the spectral theory of nonnegative tensors,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 158 شماره
صفحات -
تاریخ انتشار 2013